
6th International Conference on Building Energy and Environment
Eindhoven University of Technology, The Netherlands

6 - 10 July 2025

A Multi-Objective Optimization Algorithm for Building
Systems Retrofits

Ali Madadizadeh1, Kamran Siddiqui2, Amir A. Aliabadi1

1 School of Engineering, University of Guelph, Guelph, Ontario, Canada, amadadiz@uoguelph.ca
2 Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada,

ksiddiq@uwo.ca
1 School of Engineering, University of Guelph, Guelph, Ontario, Canada, aaliabad@uoguelph.ca

ABSTRACT
The building sector accounts for approximately 30-40% of global energy consumption and nearly
40% of Greenhouse Gas (GHG) emissions, making building retrofits essential for achieving sig-
nificant reductions in energy use and emissions. However, developing effective retrofit strategies
requires careful consideration of several critical factors: the economic viability of each retrofit
option, local climate, policies, incentives, energy prices, electricity grid emissions intensity, the
embodied carbon emissions of materials and processes, and the operational carbon emissions re-
sulting from each retrofit strategy. This study employs a micro-genetic optimization algorithm
coupled with the Vertical City Weather Generator (VCWGv1.6.0) urban physics model to iden-
tify optimal retrofit strategies for residential buildings in Toronto. The goal is to help homeowners
minimize cost, and the associated embodied/operational carbon emissions. The proposed approach
offers a framework for sustainable building retrofits that balances energy efficiency, economic via-
bility, and carbon emission reductions simultaneously in the context of evolving policy landscapes.
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1. INTRODUCTION
As the global community faces the urgent challenge of mitigating climate change, the building
sector has emerged as a critical area for intervention. Buildings are responsible for a significant
portion of global Greenhouse Gas (GHG) emissions, both through their operational energy use and
the embodied carbon in construction materials. Retrofitting existing building systems presents a
unique opportunity to reduce emissions and improve energy efficiency, often at a lower cost and
with fewer disruptions compared to new construction. Effective retrofits can address aging infras-
tructure while incorporating modern, low-carbon technologies that significantly enhance sustain-
ability (Aliabadi et al., 2021; Moradi, 2021; Moradi et al., 2021, 2022; Safdari et al., 2024).

In addition to environmental benefits, cost considerations play a vital role in the adoption of retrofit
strategies. The economic viability of retrofit measures is often evaluated through Marginal Cost
Analysis (MCA), which compares the cost-effectiveness of various strategies for reducing emis-
sions. Cost-effective retrofitting not only reduces operational and embodied carbon but also en-
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hances property values and reduces energy bills, providing a win-win situation for homeowners.
Understanding and optimizing these costs is essential to ensure widespread adoption of retrofit
solutions (Madadizadeh et al., 2024). Furthermore, a critical aspect of building decarbonization is
evaluation of Social Cost of Carbon (SCC) savings achieved through building retrofits. The SCC
represents the economic cost of the damages caused by one additional tonne of carbon emissions.
By reducing emissions, retrofits contribute to significant SCC savings, which translate into societal
benefits.

When considering retrofitting, there are several key aspects to address. The first is carbon emissions
savings and the associated environmental benefits, and the second is the cost factor. An effective
retrofit strategy should achieve the highest possible emissions savings while minimizing costs or
even generating financial returns. To identify the optimal strategy, optimization algorithms are
a suitable approach. In particular, Micro-Genetic Algorithm (MGA) is an excellent choice due
to its ability to quickly identify quasi-global optimal solutions and their computational efficiency
(Aliabadi et al., 2023).

This study investigates the potential of retrofit measures to maximize GHG emissions saving and
minimize marginal costs in the residential building sector. Through the application of MGA, we
explore optimized retrofit strategies for a typical detached two-storey residential house in Toronto
(2020) that balance environmental and economic benefits.

2. METHODOLOGY
2.1. Vertical City Weather Generator (VCWGv1.6.0)
The Vertical City Weather Generator (VCWGv1.6.0) as an urban physics model is used to simu-
late the performance of residential buildings in Toronto under different retrofit strategies (Fig. 1).
VCWGv1.6.0 integrates local weather data, building design parameters, and energy consumption
patterns to generate realistic, and high-resolution simulations of building energy use and carbon
emissions. The model uses localized climate data for Toronto, accounting for variations in tem-
perature, humidity, wind patterns, and solar radiation over the course of the year 2020. Also, the
VCWG model simulates the energy consumption of the building with and without retrofit strate-
gies, considering factors such as thermal insulation, heating and cooling efficiency, and energy con-
sumption patterns. The model calculates both operational carbon (based on energy consumption)
and embodied carbon (based on materials used in retrofits) emissions. The total carbon footprint
is tracked for each retrofit solution.

2.2. Micro-Genetic Algorithm (MGA)
The Micro-Genetic Algorithm (MGA) is employed to search for optimal retrofit solutions. MGA
is a computationally efficient version of traditional genetic algorithms, designed to solve prob-
lems involving multiple conflicting objectives. The algorithm operates by evolving a population
of potential solutions (5) (representing different retrofit strategies) over a series of generations
(5), selecting the best individuals based on the lowest fitness according to the defined objective
functions.

The primary goal of this study is to identify retrofit strategies that maximize operational carbon
saving (GHGo,s) over N = 20 years, embodied carbon emission (GHGe) over N = 20 years, and



Figure 1. Vertical City Weather Generator (VCWGv1.4.6) and the associated sub-models.

the annualized marginal cost saving (Cs) of each retrofit strategy (Eq. 1). These objectives are con-
sidered simultaneously in the optimization process using weighted sum, which is to be minimized:

F =−wo,s
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(1)

Since all three objectives are equally important for our analysis, we assign the same weights to
each, such that wo,s = we = wC,s =

1
3 . GHGo,s [kg-CO2], GHGe [kg-CO2], and C0s [$] represent

the operational carbon savings, embodied carbon emissions, and marginal annualized cost savings,
respectively. These values are derived from the solution of the first iteration of the optimization
process. The optimization itself is conducted over a set of retrofit parameters with predefined
discrete ranges and intervals, as listed in Table 1.

2.3. Economic analysis
The equations in this section are adapted from Aliabadi et al. (2023). For calculating the annualized
cost of residential building retrofits, the following equation is used,

C =CI +CF +CE +COM +L−CS, (2)



Table 1. Optimization variables with minimum value, maximum value, and variation interval: Building Integrated
Thermal Energy Storage (BITES), Solar Thermal (ST), Wind Turbine (WT), PhotoVoltaic (PV)

Variables Minimum Maximum Interval

Volume of BITES (Vbites) [m3m−2] 0.01 0.20 0.01
Roof Albedo (αR) 0.1 0.7 0.05
Working Fluid Flow Rate for ST (ṁst,f) [kg s−1m−2] 0.0001 0.002 0.0001
Collector Area for ST (Ast) [m2m−2] 0.2 0.6 0.05
Roof Thermal Resistance (Rroof) [m2K W−1] 5.46 11.5 0.5
Infiltration Rate (Vinf) [ACH] 0.5 3.5 0.5
Wall Thermal Resistance (Rwall) [m2K W−1] 3.6 7 0.5
Ventilation Rate (Vvent) [L s−1m−2] 0.3 0.4 0.05
Glazing Ratio (GR) 0.1 0.4 0.05
Air Flow Rate for ST (ṁhe,st) [kg s−1m−2] 0.001 0.02 0.001
Swept Area of WT (Awt) [m2m−2] 0.05 0.2 0.05
Solar Heat Gain Coefficient (SHGC) 0.1 0.7 0.1
Collector Area for PV (Apv) [m2m−2] 0.1 0.6 0.1

where CI is the annualized initial investment, CF is the annual fossil fuel cost, CE is the annualized
grid electricity consumption cost, COM is the annualized operation and maintenance cost, L is the
annualized loan cost, CS is the annualized income from alternative energy system salvage all in [$].
The annualized cost saving is given by:

Cs =CBase −CRetrofit +SCCsaving, (3)

where CBase [$] is annualized marginal cost for the base case without any retrofit, CRetrofit [$] is
annualized marginal cost for each retrofit strategy, and SCCsaving is annualized social cost of carbon
saving.

2.4. Environmental analysis
The environmental analysis involves the calculation of potential operational GHG emissions sav-
ings (GHGo,s) and embodied carbon emission GHGe through various building retrofit strategies.
The embodied carbon emission is the summation of carbon emission of each retrofit strategy as
shown in Eq 4:

GHGe = ApvECFpv +AwtECFst +VBITESECFBITES

+AstECFst +RwallAwallECFInsulation

+RroofAroofECFInsulation +αRECFCoolRoof

(4)

where embodied carbon factor (ECF) for PV systems (ECFpv) is 50 kg CO2em−2), for wind tur-
bines (ECFwt) is 100 kg CO2em−2), for the BITES system (ECFBITES) is 30 kg CO2em−3), and
for solar thermal systems (ECFst) is 40 kg CO2em−2). Additionally, the embodied carbon factor
for insulation materials (ECFInsulation) is 10 kg CO2em−2) and for the cool roof (ECFCoolRoof) is 5
kg CO2em−2).

The operational GHG emissions saving is the summation of GHG saving through a reduction of
electricity and fossil fuel consumption. The fuel usage reduction is computed as

Gsave = [GhB +GwhB − (Gh +Gwh)]AbldN, (5)



where GhB, GwhB, Gh and Gwh [m3 m−2] are the natural gas usage for the base and retrofitted
buildings for space and water heating, respectively. Then, the operational GHG emissions reduc-
tion potential in CO2e associated with gas saving is estimated by,

GHGGsave = GsaveρG
MWCO2

MWG
, (6)

where ρG = 0.669 kgG m−3 is the density of natural gas, MWCO2 = 44 gCO2 mole−1 is the molecular
weight of CO2, and MWG = 16 gG mole−1 is the molecular weights of natural gas. The electricity
usage reduction is computed by,

Esave = [EcB +EdB − (Ec +Eh +Ed −Epv −Ewt)]AbldN, (7)

where EcB, EdB, Ec, Eh, and Ed [kW-hr m−2] are the electricity usage for space cooling/heating and
domestic appliance in base/retrofitted buildings, and Epv and Ewt [kW-hr m−2] are electricity gen-
erated by PV and WT, respectively, in the retrofitted building. Then, the GHG emissions reduction
potential in CO2e associated with electricity saving is found as,

GHGEsave = EsaveEIE , (8)

where EIE = 25 kgCO2 kW-hr−1 is the electricity grid GHG emissions intensity in Toronto in 2020.

3. RESULTS AND DISCUSSION
Fig. 2 illustrates the normalized overall objective function for three runs ((F-min)/(max-min)).
It demonstrates that, for all runs, the objective function consistently decreases with each itera-
tion. After more than 30 iterations, the function reaches a stable minimum value, indicating that
the optimization process has made progress. This behavior highlights the efficiency of the MGA
optimization algorithm in reaching an quasi-optimal solution.

Figure 2. Normalized Best Overall Objective Function.



Table 2 shows best solution values of selected variables for optimization. The comparison between
the initial setup of optimization variables (Table 1) and the optimized solutions (Table 2) reveals
several key insights into effective retrofit strategies for Toronto. Some variables were maximized.
The maximization of photovoltaic collector area (Apv) suggests that integrating solar panels is
a highly beneficial strategy for reducing operational carbon emissions, supporting the transition
towards sustainable energy. Some variables were minimized, such as ventilation rate (Vvent), swept
area of wind turbine Awt. Other variables found an optimized value in the middle of their ranges
(e.g. solar thermal collector area Ast, roof albedo (αR), the infiltration rate (Vinf), Solar Heat Gain
Coefficient (SHGC), Glazing Ratio (GR), and volume of BITES). Note that some optimization
runs produced values in the entire range for some varaibles (e.g. infiltration rate).

Table 2. Optimized variables for each run
Variable Run 1 Run 2 Run 3

Vbites [m3m−2] 5.00e-02 6.00e-02 5.00e-02
αR 5.00e-01 5.50e-01 4.50e-01
ṁst,f [kg s−1m−2] 5.00e-04 4.00e-04 6.00e-04
Ast [m2m−2] 2.00e-01 5.00e-01 4.00e-01
Rroof [m2K W−1] 1.146e+01 1.096e+01 6.96e+00
Vinf [ACH] 1.50e+00 5.00e-01 3.00e+00
Rwall [m2K W−1] 5.10e+00 5.10e+00 4.60e+00
Vvent [L s−1m−2] 3.00e-01 3.50e-01 3.00e-01
GR 2.50e-01 4.00e-01 1.50e-01
ṁhe,st [kg s−1m−2] 8.00e-03 2.00e-03 1.10e-02
Awt [m2m−2] 5.00e-02 5.00e-02 5.00e-02
SHGC 2.00e-01 2.00e-01 1.00e-01
Apv [m2m−2] 6.00e-01 6.00e-01 6.00e-01

Fig. 3a demonstrates the process of optimizing operational carbon emissions savings through
retrofitting strategies, showcasing the potential benefits for homeowners. Initially, the carbon emis-
sions savings are inconsistent, fluctuating between approximately 120,000 and 130,000 kg-CO2,
indicating instability in the sub-objective function. However, as the optimization progresses, the
savings increase and stabilize around 135,000 to 140,000 Kg-CO−2 on average, with reduced
variability, reflecting greater reliability and consistency in the solution. For homeowners, this
translates into significant carbon emissions reductions, potentially saving an additional 10,000 to
20,000 Kg-CO2 compared to the sub-optimal initial solution.

Fig. 3b illustrates the embodied carbon emissions associated with retrofit strategies over an opti-
mization process. At the beginning, embodied carbon emission levels are notably high, approx-
imately 18,000 Kg-CO2. As the optimization progresses, significant reductions are noted, with
embodied carbon emissions stabilizing around 9,000 to 10,000 Kg-CO2. For homeowners, achiev-
ing this reduction means cutting embodied carbon emissions by nearly 50% compared to the initial
solution.

Fig. 4 shows the marginal annual cost savings achieved through optimized retrofit strategies. For
the initial solution, homeowners are subject to significant negative savings (or positive expenses),
with losses exceeding $2,500 annually. However, as the optimization process progresses, the an-
nual cost savings improve significantly, eventually stabilizing at approximately $500 per year. This
indicates that implementing the optimal retrofit strategies can result in substantial financial ben-
efits, allowing homeowners to save up to $500 annually on operational costs, while enhancing



(a) Operational Carbon Saving (b) Embodied Carbon

Figure 3. Comparison of Operational and Embodied Carbon Savings.

energy efficiency and reducing carbon emissions.

Figure 4. Marginal Annualized Cost Saving.

In addition to optimizing environmental and economic performance, this study also evaluates the
savings associated with the SCC for each retrofit strategy. The SCC represents the societal cost of
carbon emissions, encompassing the damages caused by climate change, such as extreme weather
events, health impacts, and ecosystem destruction. By reducing carbon emissions through retrofits,
this study calculates the annualized SCC savings, offering a valuable measure of the broader so-
cietal benefits. The reduction in carbon emissions for each retrofit strategy is calculated by com-
paring the operational and embodied carbon before and after the retrofit. The SCC is derived from
existing studies and models that estimate the economic cost per tonne of GHG emissions avoided.
Results show that the annualized SCC savings, calculated over 30 iterations, fluctuate between



$1,100 and $1,350. This amount of savings is of great importance as it highlights the potential for
reducing the economic impact of emissions on society. The SCC savings underscore the long-term
financial and environmental benefits of pursuing greener homes. By finding the optimal retrofit
strategy, not only can we reduce emissions and mitigate climate change, but we can also see a
financial return on these investments. Such strategies contribute to a more sustainable, resilient
society, making the case for sustainable building practices both economically and environmentally
beneficial.

4. CONCLUSIONS
The findings highlight the potential of MGA optimization for achieving comprehensive and sus-
tainable building retrofit solutions. By balancing trade-offs between operational carbon emissions
savings, embodied carbon emissions caused by retrofitting, and annualized cost savings, the pro-
posed approach demonstrates a practical pathway for reducing upfront environmental impacts
while ensuring long-term carbon benefits. Using the VCWG v1.6.0 urban physics model com-
bined with economic analysis tools, the study optimizes retrofit strategies to maximize environ-
mental and financial gains. Results show that retrofitting residential buildings in Toronto can lead
to significant carbon emission reductions, up to 140 tonnes over 20 years, while generating annual
cost savings of approximately $500. This outcome underscores the dual benefits of reducing car-
bon emissions and achieving financial savings, replacing high energy expenditures on electricity
and gas consumption with sustainable and cost-effective solutions.

References
Aliabadi, A. A., Chen, X., Yang, J., Madadizadeh, A., and Siddiqui, K. (2023). Retrofit opti-

mization of building systems for future climates using an urban physics model. Building and
Environment, 243:110655.

Aliabadi, A. A., Moradi, M., and Byerlay, R. A. E. (2021). The budgets of turbulence kinetic
energy and heat in the urban roughness sublayer. Environmental Fluid Mechanics, 21(4):843–
884.

Madadizadeh, A., Siddiqui, K., and Aliabadi, A. A. (2024). Review: The Economics Landscape
for Building Decarbonization. Sustainability, 16(14):6214.

Moradi, M. (2021). The Vertical City Weather Generator. PhD thesis, University of Guelph,
Guelph.

Moradi, M., Dyer, B., Nazem, A., Nambiar, M. K., Nahian, M. R., Bueno, B., Mackey, C., Vasan-
thakumar, S., Nazarian, N., Krayenhoff, E. S., Norford, L. K., and Aliabadi, A. A. (2021). The
Vertical City Weather Generator (VCWG v1.3.2). Geosci. Model Dev., 14(2):961–984.

Moradi, M., Krayenhoff, E. S., and Aliabadi, A. A. (2022). A comprehensive indoor–outdoor
urban climate model with hydrology: The Vertical City Weather Generator (VCWG v2.0.0).
Building and Environment, 207:108406.

Safdari, M., Dennis, K., Gharabaghi, B., Siddiqui, K., and Aliabadi, A. A. (2024). Implications



of Latent and Sensible Building Energy Loads Using Natural Ventilation. Journal of Building
Engineering, 96:110447.


	INTRODUCTION
	METHODOLOGY
	Vertical City Weather Generator (VCWGv1.6.0)
	Micro-Genetic Algorithm (MGA)
	Economic analysis
	Environmental analysis

	RESULTS AND DISCUSSION
	CONCLUSIONS

